矩阵第一题。也是矩阵的模板题。下面是模板。
比较重要的是,矩阵的乘法会有很多很神奇的用法。比如如下几个网站所讲。
这是Matrix67大神的网站。
#include <iostream>using namespace std;#define MAXN 2#define LL long long#define mod 10000class Matrix { public: long long m[MAXN][MAXN]; //二维数组存放矩阵 Matrix(){} //对数组的初始化 void init(long long num[MAXN][MAXN]){ for (int i = 0; i < MAXN; i++){ for (int j = 0; j < MAXN; j++){ m[i][j] = num[i][j]; } } } //重载矩阵的乘法运算 friend Matrix operator*(Matrix &m1, Matrix &m2) { int i, j, k; Matrix temp; for (i = 0; i < MAXN; i++) { for (j = 0; j < MAXN; j++) { temp.m[i][j] = 0; for (k = 0; k < MAXN; k++) temp.m[i][j] += (m1.m[i][k] * m2.m[k][j])%mod; temp.m[i][j] %= mod; //注意每一步都进行取模 } } return temp; } //矩阵的快速幂 friend Matrix quickpow(Matrix &M, long long n){ Matrix tempans; //初始化为单位矩阵 //初始化 for (int i = 0; i < MAXN; i++){ for (int j = 0; j < MAXN; j++){ if (i == j) tempans.m[i][j] = 1; else tempans.m[i][j] = 0; } } //快速幂(类似整数) while (n) { if (n & 1) tempans = tempans * M; //已经重载了* n = n >> 1; M = M * M; } return tempans; } };int main() { LL n; while (cin >> n &&n != -1) { Matrix M; LL mm[MAXN][MAXN] = { 1, 1, 1, 0 }; M.init(mm); Matrix temp = quickpow(M, n); cout << temp.m[1][0] << endl; } } |